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Measurements of the turbulent pressure field on the outer surface of a 3 in. 
diameter cylinder aligned with the flow were made at  a point approximately 
24 ft. downstream of the origin of the turbulent boundary layer in an air stream 
of 145 ft./sec. The boundary-layer thickness was 2.78 in. and the Reynolds num- 
ber based on momentum thickness was 2.62 x lo4. The wall-pressure measure- 
ments were made with pressure transducers constructed from 0.06 in. diameter 
lead-zirconate-titanate disks mounted flush with the wall. The measurements 
including root-mean-square, power spectrum, and correlations of the wall pres- 
sure are compared with the existing experimental results for the turbulent 
pressure field beneath a plane boundary layer. The streamwise convection speed 
deduced from longitudinal space-time correlation measurements was almost 
identical to that obtained in the plane boundary layer. The rate of decay of the 
maxima of the space-time correlation of the pressure produced by the convected 
eddies was double that in a plane boundary layer. The longitudinal and trans- 
verse scales of the pressure correlation were approximately equal (in a plane 
boundary layer the transverse scale is larger than longitudinal scale) and were 
one-half or less than the longitudinal scale in the plane boundary layer. It is 
concluded that the effect of the transverse curvature of the wall is an overall 
reduction in size of pressure-producing eddies. The reduction in transverse scale 
of the larger eddies is greater than that of the smaller eddies. In  general, the 
smaller eddies decay more rapidly and produce greater spectral densities at  high 
frequencies owing to the unchanged convection speed. 

1. Introduction 
This paper is concerned with the experimental measurement of wall-pressure 

fluctuations beneath a turbulent boundary layer on the outer surface of a cylinder 
aligned with a low-speed flow. The objective of the experiment is to determine 
the effect of transverse curvature on the wall-pressure fluctuations and on the 
structure of turbulence by comparison with measurements beneath flat plate 
boundary layers. 

Knowledge of the pressure fluctuations beneath turbulent boundary layers 
is desired for numerous problems in fluid mechanics. The problems include: 
radiated sound produced by turbulence in the boundary layer when the surface 
is rigid, surface vibration and sound radiation produced when the turbulent 
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boundary layer is developed on a slightly flexible surface that is set in motion 
by the pressure fluctuations, and new knowledge of turbulence structure that 
can be obtained from wall-prcssure measurements. I n  general, i t  has been ob- 
served that the wall-pressure fluctuations beneath a flat boundary layer are 
random, without periodic components arid the root-mean-square wall pressure 
is of the order of 2-6 times the wall shear stress. 

Using the method of space-time correlation, it was discovered (Willmarth 
1958a) that the random pressure fluctuations were convected with a speed of 
approximately O.SU,. More detailed investigations (Willmarth & Woolridge 
1962; Bull et nl. 1963) have shown that the convectionvelocity varies with stream- 
wise spatial separationof the measuring stations and that for small spatial separa- 
tion the convection velocity is low, 0.56Um but increases t o  0*83U, for very large 
spatial separation. The increase in convection velocity wit'h strearnwise separa- 
t8ion of measuring points is attributed to  the more rapid decay of the smaller 
pressure producing eddies. 

Ideally, the effect of transverse curvature on wall-pressure fluctuations can be 
determined by comparing measurements made on a cylinder and on a flat 
plate a t  exactly the same Reynolds number, pressure gradient, Mach number and 
surface roughness. I n  actuality, measurements a t  low speeds have been made in 
the boundary layer on a smooth flat plate (Willmarth & Wooldridge 1962), 
at  a slightly higher Reynolds number, based on momentum thickness, 
R, = 38,000 than could be obtained on the cylinder, R, = 26,200. On the other 
hand, we will also compare our measurements on the cylinder with the measure- 
ments of Bulletal. (1963), obtained beneath a flat plate boundarylayer atslightly 
lower Reynolds number, R, = 19,500. 

Our knowledge of turbulent boundary layers with transverse curvature is 
not as extensive as i t  is for the flat plate boundary layer and is restricted to 
measurements and similarity laws for mean quantities only. The papers of 
Richmond (1967), Yu (1958), Yasuhara (1959), Reid & Wilson (1963) and Rao 
(1967) (these are discussed in $4)  contain measurements and in some cases 
similarity laws for mean properties of turbulent boundary layers with varying 
amounts of transverse curvature. 

It is often profitable in attempting to understand mean properties of the flow 
in a turbulent boundary layer to  first consider the flow in a laminar boundary 
layer. Glauert & Lighthill (1956) have shown that the laminar boundary layer 
developed on a cylinder (when transverse curvature effects are large) has a much 
fuller profile than the Blasius boundary layer on a flat plate. I n  fact, the velocity 
ncar the wall is proportional to the logarithm of the distance from the cylinder 
axis and departs from that of the Blasius profile (in which ?L is linearly propor- 
tional to  y near the wall) as the cylinder radius is reduced. The cause of this be- 
haviour (as was clearly explained by Glauert & Lighthill) is that " the shearing 
force, on a cylinder of unit length, is equal to the shear stress ,udu/dy multiplied 
by the circumference %(a + y) of the cylinder, and this force must be independent 
of y in the region where the acceleration of the fluid is negligible. that is, near the 
solid boundary ". 

One can expect that the presence of turbulence in a boundary layer with 
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transverse curvature will increase the rate of momentum exchange (just as it 
does in a flat plate boundary layer) with the result that, in comparison to the 
laminar boundary layer on a cylinder, tlie velocity profile will be fuller, the skin 
friction increased, and the stream-wise rate of growth of the boundary-layer 
thickness decreased. 

The effect of transverse curvature on the structure of turbulence in the boundary 
layer and on the pressure fluctuations beneath i t  have not been studied. As aresult 
of the present wall-pressure measurements, we have been able to qualitatively 
explain some of the effects of transverse curvature on turbulence structure. 

2. Wind tunnel and cylindrical model 
2.1. Wind tunnel facility 

The experiments were carried out in the test section of the 5 x 7 ft.  low-speed 
wind tunnel a t  the Gas Dynamics Laboratories, Department of Aerospace 
Engineering, The University of Michigan. The wind tunnel test section is 30 ft. 
long and is indoors. The settling chamber, fan and steel ducting that recirculates 
the air are out of doors. The total distance around the wind tunnel circuit is 
332 ft. and the contraction ratio of the nozzle is 15 : 1.  

The sound field in the tunnel test section has been measured by Willmarth & 
Wooldridge ( 1962). Wall-pressure correlation measurements on the floor of the 
test section showed a small peak a t  negative time delay which was caused by 
sound propagating upstream. From the measurements, it was determined that 
tlie sound energy amounted to approximately 1/20 of the energy in the turbulent 
wall-pressure fluctuations. I n  the present wall-pressure correlation measure- 
ments the sound energy is approximately 1/50 of the energy in turbulent wall- 
pressure fluctuations. The reduction of sound level was accomplished by better 
sealing against air leaks a t  the diffuser entrance and bj- reducing structural 
vibration in the downstream region of the test section and diffuser entrance. 

The free-stream turbulence level measured by Tu & Willmarth (1966) a t  
200 ft./sec free stream speed was ,/(u2)/Um = 2.50 x lop3 in the flow direction. 
The configuration of the wind tunnel has not been changed since that time. 

2.2. Cylindrical model 

A 40 ft. long, 3 in. diameter cylindrical model on which the boundary-layer 
measurements were made was installed along the centreline of the wind tunnel. 
It consisted of a 2 in. diameter steel tubing with & in. wall thickness used as the 
‘backbone’ of the model and a 3 in. steel tubing with 0.032 in. wall thickness 
used as the aerodynamic surface. The 3 in. tubing was positioned on the inner 
2 in. tubing by means of adjustable set-screws. A 6 in. long ellipsoid of revolution 
and an 8 in. cone, both made of wood, were attached to  the upstream and down- 
stream end of the model respectively. The supports for the 2 in. tubing were so 
designed that they could furnish moments to reduce the mid-span deflexion of 
the tubing (figure 1). Upstream support consisted of five streamlined aircraft 
wires. Two wires, T,, and one wire, TI, produced a counter-clockwise moment. 
The other two wires a t  the bottom were dummy wires. The downstream support 
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was a unistrut frame with two unequal height columns (figure 2) which was 
covered with a streamlined fairing. When the 2 in. tubing was bolted on the 
columns, a clockwise moment was produced. The deflexion of the model in the 

FIGURE 1. Schematic diagram of 2 in. diameter steel tubing installed in the wind tunnel 
as the backbone of the cylindrical model. : 1 ::, 3 in. diameter tubing; -, 2 in. dia,meter 
tubing. 

I 1  

Rubber O-'ring 1 I I 1 
I I 1  

FIGURE 2. The test station and the rear support of the cylindrical model. 
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test section of the tunnel was reduced to a minimum value by properly adjusting 
the forces TI and .F,. 

The wind velocity near the wire, TI, was low, approximately O-09Um, therefore, 
the larger deflexion at the front end of the model did not effect the symmetry of 
the boundary-layer flow in the test section. The wind velocity near the wires, 
T,, was approximately 0.15Um. Since the terminals of the wires near the surface 
of the model were & in. in diameter, they caused an asymmetry of the flow field 
around the cylinder in the test section. Four airfoil-shaped filets, made from 
balsa wood, were used to reduce the wake from the junction of the support wires 
and cylindrical surface with satisfactory results as described below. 

I t I I 1 I I I 

0 4n I fn 2n 

4 
FIGURE 3. The symmetry of the velocity around the cylinder 0.65 in. from the wall 
at the transducer station. 0, Urn = 104ft./sec; 0, Urn = 138ft./sec; A, bTm = 196 ft./sec. 
q5 is azimuthal angle. 

An impact pressure probe array which consisted of eight tubes 0.65 in. above 
the surface of the model equally spaced about the circumference of the cylinder 
was used to measure the circumferential velocity distribution at 16 and 24 ft. 
from the entmnce of the test section. Initially the velocity distribution was very 
asymmetric with low velocity regions at four circumferential positions in the 
wake of the four upstream support wires. The use of balsa wood filets (see above) 
reduced the wake from the upstream wire supports and careful alignment of the 
model so that it was parallel to the stream by moving the downstream supporting 
struts reduced the asymmetry of the boundary layer to an acceptable level. 
The circumferential velocity distributions measured at the pressure transducer 
station (x = 24 ft.) for threedifferent freestreamvelocities are plotted on figure 3, 
where q5 is the azimuthal angle about the cylinder axis. The largest velocity 
deviation was O-O2U,. 

At its final position, the maximum vertical deflexion of the model in the test 
section of the tunnel was 0-39 in., and the maximum lateral deflexion was 0-25 in. 

4-2 
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3. Instruments and experimental methods 
3.1. Instruments and methods for measuring mean properties of the flow 

To measure the velocity profile very near the surface of the cylinder a Pitot tube 
was installed on a traversing device. The Pitot tube was used in the Reynolds 
number range 50 < R = hU/v  < 250 where h = 0-003 in. was the internal height 
of the mouth. The correction to the reading of the tube owing to viscous effects 
was negligible (see McMillan 1954). The maximum angle of attack of the Pitot 
tube which was mounted on a pivot in the traversing device was 10 degrees. 
It was experimentally confirmed that the angle of attack did not affect the total 
pressure reading up to an angle of 15 degrees (see Alexander, Baron & Comings 
1953). The Pitot tube was moved on its pivot by the operator outside the test 
section, using a linkage and worm gear mechanism that was driven by a flexible 
shaft. The distance of the Pitot tube from the surface was measured with a cathe- 
tometer focused on the Pitot tube through the window of the tunnel. 

The static pressure was measured with a slender tube parallel to the stream 
direction in contact with the surface of the cylinder. The tube was a long 0.065 in. 
diameter hypodermic tubing with one end sealed. A 0-035 in. diameter hole was 
drilled in the tube 34 in. from the sealed end. 

The difference between Pitot and static pressure was measured with a precision 
single-tube manometerf- with a resolution of 0.001 in. using water as the indicating 
liquid. 

The velocity profiles quite far from the wall, y/6 > 0.2, were measured with a 
Pitot tube rake which consisted of 10 Pitot tubes and two static tubes at  dif€erent 
heights from the wall. 

Thc wall-shear stress was measured according to Preston’s method (Preston 
1954) using a 0.042 in. diameter Pitot tube in contact with the surface of the 
cylinder. The calibration given by Pate1 (1965) was used for calculation of wall- 
shear stress. 

3.2. Instruments and methods for measuring the turbulent pressure Jield 

At the test station, 24 ft. from the entrance of the test section, the lower half of 
the model was replaced by a 44 in. long, 3 in. diameter, semi-cylindrical lead 
shell (figure 2). There were 13 transducer elements, which were 0.06 in. diameter 
and 0-020 in. thick lead-zirconate-titanate (PZT-5) disks mounted permanently 
flush with the outer surface of the lead shell. The arrangement of the transducers 
which was selected to efficiently obtain the spatial correlation of the pressure 
field is shown in figure 4. 

Figure 5(a) shows the cross-section of a single transducer plug mounted in the 
lead shell. A fine copper wire (0.002 in. diameter) was attached to the front surface 
of the phenolic plug and brought out through the hole in it which was then filled 
with wax. The PZT-5 disk was glued on the plug with conducting cement.$ 
This plug was then inserted into a 0.063 in. diameter hole drilled through the lead 
shell. The position of the plug was so adjusted that the PZT-5 disk was flush 

t The Meriam Instrument Co., Micro-Manometer Model 34 FB 2. 
$ SC 12 Microcircuits Co., New Buffalo, Michigan. 
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i !  

- -* 1- - 

FIGURE 4. Developed view of the spatial arrangement of the pressure transducers ; 
z = uq5. 

( ( I )  

wax Phenolic 

PZT-5 Lead 

0 0.1 0.2 in. 
Brass - 

(0) 

FIGURE 5. Pressure transducers assembly. (a) Single transducer plug; ( b )  triple 
transducer plug. 
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with the lead surface. The remainder of the hole was filled with vacuum sealing 
wax, a product of Central Scientific Company. On the front surface, the trans- 
ducer was electrically connected to the lead shell with a thin coat of conducting 
silver paint.? 

The cross-section of the triple transducer plug is shown on figure 5(b).  The 
construction differed from the single transducer plug in that an additional brass 
sleeve was used and the method of ground connexion was altered. The outer 
surface of the brass sleeve was curved to match the surface curvature of the lead 
shell. The electrical connexion between the brass and the PZT-5 disks was pro- 
vided by gluing a piece of aluminized mylar plastic sheet (0.0005 in. thick) 
on the surface. The brass sleeve was in contact with lead. 

, I  

Pressurc 
transducer 

To preamplifier 

- 
FIGURE 6. Circuit diagram for pressure transducers and cathode follower. 

Thirteen short Microdot coaxial cables with Microdot connectors a t  one end 
were glued on the inner surface of the lead shell with epoxy cement.$ The copper 
wires a t  the back of the transducer plugs were soldered to the central conductor 
of the cables. Two 7 ft. long Microdot coaxial cables with additional outer shield- 
ing to make a tri-axial cable were used to conduct the transducer signals to the 
input of the cathode followers and preamplifiers. To reduce parasitic capacitance 
of the long cable, the coaxial cable shield was driven by a voltage proportional 
to the transducer signal and the additional outer shield outside the cable was 
used as ground (figure 6). The capacitance of the pressure transducer was 32 pF. 
The use of a driven shield effectively reduced the capacity of the long cables 
leading to the cathode followers to  a low value. 

In order to seal the air gap between the lead shell and the steel tubing, and to 
support the lead shell it was held on the model by a thin rubber cuff (0*008 in. 
thick). The outer surface of the 3 in. diameter steel tubing above the lead shell 
was attached to a vibration isolated structure beneath the 2 in. diameter pipe 
and running to the rear and down to a massive structure mounted on rubber 

t SC 12 Microcircuits Co., New Buffalo, Michigan. 
$ Epo-lux, Steelcote Mfg. Co., no 185A. 
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pads beneath the tunnel, see figure 2. Thus, the major portion of the cylinder 
beneath the rubber cuff was not in contact with the wind tunnel wall or cylinder. 
This was essential to reduce the signals produced by vibration of the transducers 
to a low level. With this mounting no corrections for vibration were necessary. 
Four rubber O-rings were placed between the contact surfaces of the lead and 
the steel to further isolate the lead shell and transducers from vibration. 

The frequency response of the transducers was assumed to be flat over the 
frequency range of interest, f < 50,000 Hz. Willmarth (1958b) has shown, by 
shock tube calibration, that transducers larger than the present transducers 
which were made in similar manner had a flat frequency response up to at least 
50,000 Hz. The absolute calibration of the pressure transducers was carried out 
‘in situ’ beneath the rubber cuff with the lead shell installed on the cylindrical 
model. A prevously calibrated transducer (Willmarth & Wooldridge 1962) and 
the new pressure transducers were enclosed inside a Helmholtz resonator which 
was made from a narrow mouthed bottle whose bottom was cut to fit the cylinder. 
The joint was sealed with clay and the Helmholtz resonator was excited at  250 Hz 
by a carefully positioned low speed air jet blowing across the bottle mouth. The 
calibration was obtained by comparing the output of the two transducers inside 
the Helmholtz resonator. The sensitivity of the transducers was typically 
1.32 x 10-6 V/dyne/cm2. 

The transducers were connected to a cathode follower with high input impe- 
dence of 1.2 x lo* ohms (figure 6) followed by a low noise preamplifier and ampli- 
fier system with a maximum gain of lo5 (see Willmarth & Wooldridge 1962). 
The band width of the amplifier was adjustable between 1 Hz and 160 KHz. 
The electrical signals from the pressure transducers were recorded on a three- 
channel Ampex FR 1100 tape recorder which had a band width from d.c. to 
20 KHz. The root-mean-square wall pressure was measured with a Ballantine 
model 320 true 1.111.5. meter. 

The spectrum of the fluctuating wall pressure was obtained by passing the 
signal through a Tektronix Type 1 L 5 spectrum analyzer plug-in unit? which 
was driven by a Tektronix Type 544 oscilloscope. The output was recorded on a 
Hewlett Packard Model 2DR-2M x-y recorder. 

The correlations of the wall pressure were measured with a Princeton Applied 
Research Model 101 correlation function computer whose output was recorded 
with the above X-ZJ recorder. Two Kron-Hite Model 310-AB variable band pass 
filters were used for correlation measurements in narrow frequency bands. 

4. Mean flow field 
4.1. Equations of motion 

Using the usual boundary-layer approximations, the boundary-layer equations 
for the mean motion written in cylindrical co-ordinates with the x-axis parallel 
to the stream, are 

au au lap v a  au l a  __ 
ax ar p ax r ar ( a,) r ar 

U - - + v -  =---+-- r -  ---(yuv) 

i The unit was calibrated in amplitude and frequency before use. 
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and aPlar = 0, ( 2 )  

au iapv) 
with continuity equation - + ~ - - 0, 

ax r ar (3) 

where U and V are the mean velocity components parallel and normal t o  the 
stream. P is the mean pressure and u and v are the fluctuating velocity com- 
ponents parallel and normal to the stream. 

The displacement thickness, a*, and the momentum thickness, 0, for a fluid 
of consta,nt density are defined by 

and 

(see Moore 1962). Here a is the cylinder radius. 

4.2. Similarity laws 

The correct similarity laws for the mean flow in an axially symmetric boundary 
layer with zero-pressure gradient have not yet been firmly established. If the 
amount of transverse curvature is not too large, the most logical approach 
might be to assume that the usual law of the wall and law of the wake are still 
valid. However, one must recognize immediately that in this problem there is an 
additional dimensional length parameter, a,  the radius of curvature of the wall. 
Thus, in the wall region dimensional considerations indicate a functional re- 
lationship 

and in the wake region, -- urn- u - G ( $  :). 
u7 (7 )  

Here, we have made all the usual assumptions about the mean flow in the wall 
and wake region (see Clauser 1956, p. l), and have simply added the additional 
length, a, the transverse radius of curvature of the wall. 

It is quite possible that the traditional division of mean flow properties into a 
wall region and wake region may not be valid when the transverse curvature is 
large, 6/a 1. One may visualize a very small radius of curvature of the wall 
in which the region occupied by fluid motions obeying the law of the wall (which 
is assumed to be of the form of equation (6)) is a very small fraction of the region 
occupied by the turbufent boundary-layer flow. In other words, the boundary 
layer on a slender rod (a/6+ 0) is almost all a wake-like flow and the region near 
the wall (which, if it is called the wall region, must be independent of free stream 
conditions) would be a very small region containing the viscous sublayer. It is 
possible that in the limit a -+ 0 the wall region contains only the viscous sublayer. 

In our present work we have been restricted to boundary layers in which 
a/a 2. For this case we will assume that the traditioiial (but modified, see 
equations (6) and (7) )  division of the mean flow into a wall region and a wake 
region is valid. In  addition, we will also adopt the procedure of Richmond 
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(1957), for the flow in the region near the wall. Essentially what Richmond did 
(under Coles’ guidance) was to assume that there was a region near the wall 
where the mean flow was dominated by the wall. He then obtained a law of the 
wall for the axisymmetric boundary layer using Coles’ streamline hypothesis 
in that region. Coles’ streamline hypothesis (Coles 1955, p. 153) (which is true 
in the region near the wall of a two-dimensional turbulent boundary layer) 
asserts that U/Ur is constant on mean streamlines where U, = , / ( ~ ~ / p )  and 7, 
is the wall-shear stress. Therefore, we can expect Richmond’s procedure for 
the wall region of the axisymmetric boundary layer to be valid in the region near 
the wall where the turbulent flow is still essentially two-dimensional (or, in other 
words, when the ratio y/a is small). If y/a is not small, t.he similarity law ob- 
tained from the streamline hypothesis may be incorrect. 

We will give for reference (since Richmond’s pa.per is not readily available) a 
brief description of his procedure for obtaining the similarity law. He assumes 
(the streamline hypothesis) that U/U, is constant on the mean streamlines. 
Therefore, using the stream function, $, 

(9) 
1 u  

inverting this expression 

The continuity equation (see (3)) defines the stream function 

$ = - H (-) . c u, 

Thus, from (9) and (10) U, = UrC 

Integrating U, over the area between the wall and radius r 

Inverting this expression, we obtain 

U 
- = F[&CU,(r2 - $)I. 
u, 

The constant C is evaluated at  the wall (assume F’(0) = l), and C = 1/va. 
Richmond’s law of the wall is 

Using the new co-ordinate (U,y/v)(l +y/2a) ,  one can write the law of the wall 
in the form 

_ -  U - 57510g,, [F (1 +$)I +5*10, 
Ur 

where the function P is the usual (empirically verified) form for two-dimensional 
flow outside the sublayer. It appears that the above equation (14) provides an 
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adequate representation of our results for Sja M 2. There ale indications from 
Richmond’s (1957) work, that the region of validity of (14) becomes a rather 
small region near the wall as Sja becomes large. 

There are a number of other investigations of the mean flow field in the region 
near the wall. In  the work of Yu (1958) (which includes experimental results) 
a different method was developed (at Iowa Institute of Hydraulic Research 
under the guidance of Rouse and Landweber) for correlation of the mean. flow 
in the wall region and the wake region. In Yu’s formulation, the wall region con- 
tains the free-stream velocity as an additional parameter (in addition to the 
parameters v, U, and a).  We have chosen Richmond’s method for data presenta- 
tion because in the wall region one should not have free-stream velocity as a 
parameter. 

Yasuhara (1959) has reported mean velocity measurements on a slender 
cylinder for cases in which S/a M 1. Yasuhara presented his results in the form 
advocated by Richmond (1957), with results quite similar to Richmond’,s and 
to our present measurements. 

Rao (1967) has reported a different form for the law of the wall. His form is 
derived on the basis that for a slender cylinder, &/a 9 1, the sublayer thickness 
is comparable to the radius of transverse curvature. His reasoning suggests that 

U U,a r 

U, v a 
-=-In- 

This form is certainly correct in the region very near the wall where 
U = V = u = IJ = 0 (see (1)). We doubt that, as suggested by Rao (1967)) (16) 
can be valid in a region extending from the wall as far as the radius of curvature 
of the cylinder when S/a 9 1. Thus, we believe that the correct conception of 
the sublayer is a region dominated by wall effects and that no matter how large 
the ratio Sja becomes the sublayer thickness is always small compared to the 
radius of curvature of the surface, a. If this were not true, the turbulent eddying 
flow would wash the fluid in the sublayer completely off the cylinder. Rao also 
proposes that throughout the boundary layer, for S/a $ 1, the form of the velocity 
profile should be 

where F is the function obtained for the law of the wall in a two-dimensional 
flow. We have not used this form, (17), because it has the obvious property (since 
the function F is a logarithm in the wall region) of taking the logarithm of the 
logarithm of r/a. This reduces scatter of data points for large r and it requires 
extremely accurate measurements to determine the validity of the formulation, 
(27). It would appear that the mean flow field in a turbulent boundary layer with 
transverse curvature is not well understood when S/a is large. It appears that the 
law of the wall, (14), and (16) have only a small region of validity when S,/a $ 1 
(see Richmond 1957). Also, an appropriate simiIarity law for the wake region 
has not been firmly established for large or small values of Sja. 
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4.3. Experimental results for meanJlow field 

The streamwise static pressure distribution along the surface of the cylinder at  
two different free-stream velocities was measured as described in $3.1. The 
results were plotted in figure 7, showing a slight streamwise pressure increase. 
This was caused by the too rapid divergence of the side walls of the wind-tunnel 
test section. The mean flow field in the flat plate (two-dimensional) boundary 
layer on the floor of the test section has been investigated by Willmarth & 
Wooldridge (1962). It was found that in the pressure gradient of figure 7, the mean 
velocity profiles were (within the accuracy of the measurements) those generally 
accepted for an equilibrium two-dimensional boundary layer (see Coles 1954). 
In addition, the dimensionless shape factor, r, of Buri (see Schlichting 1968, 
p. 629) was I’ M - 6 x 
required for separation of a two-dimensional turbulent boundary layer. We 
can conclude that the slight adverse pressure gradient aC,/ax = 3 x lop3 ft.-l, 
will not cause the mean flow in the boundary layer to deviate appreciably from 
the zero pressure gradient case. 

or approximately l / l O O  of the value, I? = - 7 x 

up 

a 
Pressure transducer 
location 

-0.02 1 I I I I I I I 1 
0 4 8 12 16 20 24 28 32 ft 

X 

FIGURE 7. Pressure gradient along the cylinder. 0, Urn = 99 ft./sec; a, U, = 199 ft./sec. 

The wall shear stress was measured using a Preston tube as described in $3.1. 
The results are displayed in figure 8 (see also tables 1 and 2) along with the 
measurements of Richmond (1957), Yasuhara (1959) and Yu (1958)t for axially 
symmetric turbulent boundary layers with approximately the same ratio of 
O/u as our experiments. The present measurements agree reasonably well with 
previous results at  R, M lo4 and extend the skin friction measurements to 
R, M 3.5 x 104 for 0.15 < Ola < 0-25. Note that the skin friction coeEcient is 
appreciably larger than in a flat plate turbulent boundary layer. 

The velocity profiles measured at the location of the pressure transducers 
are plotted in figure 9 in the form suggested by (14). The results of the velocity 

-f Yu’s (1958) definition of 8 is different from ours (equation (5)). When 8 is calculated 
according to (5), Yu’s value of R, is reduced by approximately 15 yo. 
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profile measurements (figure 9) show that Richmond’s modified law of th.e wall 
(equation (14)) agrees fairly well with measurements of the present investiga- 
tion for S/a < 2. In  table 2 are summarized the various mean properties of 
turbulent bounda.ry layers with transverse curvature that have been measured 
in this investigation. 

I I I I I I l l  I I I I I 1 1 1 1  

3 x  10’ 10’ 10’ 10’ 

Re 

FIGURE 8. Skin friction coefficient. A, Yasuhara, 0/a = 0.154; a, Yu, 0.20 < e/a < 0.25; 
, Blasius; 0, R,ichmond, 0.14 < 0/a < 0.21; 0 ,  present, 0.15 < e/a < 0.25; --- 

-, Coles’ flat plate. 

FIGURE 9. Mean velocity profiles in the axially symmetric turbulent boundary layer. 
0, U, = 200 ft./sec; 0 ,  U, = 145ft./sec; A ,  U ,  = 100ft./sec;--- , Coles’ ideal turbrilent 
boundary layer according to equation (14). 

5.  Experimental results 
The measurements of the wall-pressure fluctuations beneath the axially sym- 

metric boundary layer will be discussed in the light of our knowledge of wall- 
pressure fluctuations beneath a plane two-dimensional boundary layer. The 
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X(ft.) Urn (ft./sec) 

8 30 
8 60 
7 90 
8 154 
9 154 

10 154 
3.28 110 

e(in.1 
0.253 
0.247 
0.20 
0.069 
0.094 
0-109 
0.051 

Ola 
0.253 
0.247 
0.200 
0.138 
0.188 
0.210 
0.154 

Rl? 
3860 
7600 
9010 
5540 
7540 
8750 
3360 

c, Source 

0.0037 
0.00338 )Yu (1958) 
0.00315 
0.00323 
0.00305 , Richmond (1957) 
0.00290 
0.00347 Yasuhara (1959) 

1 

X = Distance from the nose of the cylindrical model. 

TABLE 1. Summary of results of skin friction measurements for turbulent boundary 
layers with transverse curvature 

X(ft.) (ft./sec) R, O(in.) 0/a U, C, Cf/C; Ro 8/20 6*/8 
24 200 134,000 0.382 0.254 6.96 0.00230 1.11 33,800 1.007 1.15 
24 145 115,000 0.341 0.228 4.98 0.00219 1-02 26,200 0.926 1-23 
24 100 70,200 0.359 0.238 3.83 0.00276 1.22 16,800 1.073 1.14 
16 198 136,000 0.218 0.146 7.30 0.00258 1.14 19,800 0.607 1.14 
16 101 69,800 0.244 0.162 3.92 0.00284 1.14 11,300 0.80 1.21 

C; (flat plate) due to  Coles (1954). 

TABLE 2. Mean properties of the axially symmetric turbulent boundary measured 
in the present investigation 

most striking property of the wall-pressure fluctuations beneath a plane-boundary 
layer is the now well-known fact that the random pressure fluctuations are 
convected at speeds of the order of @5U, t o  O-85Um. In the present experiment 
we have found that the space-time correlation of wall-pressure fluctuations 
beneath the boundary layer with transverse curvature also shows convection 
and decay, but with the important difference that the rate of decay of pressure 
correlatioiis is more rapid. This will be discussed in detail below along with other 
statistical measurements of the random pressure field which include the mean- 
square; power spectrum; lateral, oblique, and longitudinal correlations (with 
zero time delay) ; and narrow frequency band correlations of the wall-pressure 
fluctuations. 

5.1. Longitudinal space-time correlations of the wall pressure 

The normalized wall-pressure correlation is 

where the over-bar denotes a time average and the co-ordinate x (and x3) lies 
in the surface of the cylinder and is normal to the axis (and the free stream). 
The results of our longitudinal space-time preseure correlation measurements 
in the frequency band 0.144 < wS*/U, < 28.8 are shown in figure 10. The 
correlation curves (reading from top to bottom) were measured at  increasing 



values of spatial separation. The peaks of the correlation occur at  larger and 
larger time delay as the spatial separation increases (note that the displaced 
time origins are indicated by small vertical bars on figure lo).? At large spatial 
separations a small peak appeared on the left branch of the curve, T < 0. The 
peak is caused by upstream propagation of pressure fluctuations owing to the 
sound produced in the wind-tunnel diffuser and fan. The mean-square sound 
pressure in the test section can be estimated from the average maximum value of 
the peak on the space-time correlation curves for r < 0. It is approximately 



Wall-pressure Jluctuations beneath boundary layers 63 

0 .022 .  This value was used in estimating the true value of the spatial correlations 
of wall pressure (see appendix A). 

In  the present investigation, the convection speed is identical (within the 
experimental error) with the convection speed in a plane boundary layer. Figure 
11 shows the location, for various streamwise spatial separations and time delays, 

0 4 8 12 

x#* 
FIGTJRE 11. Time delay for R,, maximum at various constant values of xl, z3 = 0. 

2; 0, 6/a = 0, Willmarth & Wooldridge; ---- , &/a = 0, Bull. 

0-2 0.4 t 
0 

0 1 2  3 4 5 6 7 8 9 10 

"1/6* 

FIGURE 12. Local Convection speed of the pressure-producing turbulent eddies. 
--, 6/a = 2 and 6/a = 0, Willmarth & Wooldridge; ----, 6/a = 0, Bull. 

of the maxima of the pressure correlation along with the two-dimensional results 
from Willmarth & Wooldridge (1962) and Bull et al. (1963). Figure 12 shows the 
convection speed for increasing values of spatial separation. The convection 
speed of figure 12 is obtained graphically from the slope of the locus of the peaks 
of pressure correlation of figure 1 1. The reader should note that this definition of 
convection speed is somewhat ambiguous since the correlation of the pressure 
decays in time and space. A perfectly definite convection speed is easy to define 
and to understand if one has a frozen random pattern convected at  constant 
speed because the lines of constant correlation (the convection path) in the xl, 
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T plane will be parallel straight lines whose slope is the convection velocity. In 
the case of a decaying random field in which turbulence of various scales moving 
at  different convection speeds is present, the reader is referred to  a paper by 
Wills (1964) who has discussed the difficulties with the various definitions of 
convection speed and has proposed a convection speed definition based on 
maximizing the integral time scale. In  practice, for our experiments, it is an 
almost impossible procedure to use Wills’ definition of convection speed since 
one must measure pressure correlations while varying the spatial separation 
between the pressure transducers.-/- The surface curvature and the inaccessi- 
bility of the cylindrical model (in the centre of the tunnel) make this impractical. 
Also, it is not really necessary to use a precise definition of convection velocity 
because we are looking for changes from the convection properties of the two- 
dimensional wall-pressure fluctuation field. The definition of convection velocity 
used for the present work is precisely the same as that used in the previous plane 
boundary-layer experiments. 

(1  1 2  3 4 5 6 7 8 9 10 

“I/&* 

FIGURE 13. Decay of maximum wall-pressure correlation. 0 ,  &/a = 2 peak values of 
figure 10; ----, plane boundary layer, Willmarth & Wooldridge; -- -, plane-boundary 
layer, Bull. 

As we have already mentioned, the convection velocity is the same as that 
found beneath a plane boundary layer. The measurements show in each case an 
increase in convection velocity from approximately 0*56U, to 0.83U, as the 
longitudinal spatial separation is increased. The increase in convection velocity 
is caused by the more rapid decay of the smaller pressure producing eddies near 
the wall. After the smaller eddies have decayed only larger eddies remain and, 
since they are larger, their effective centres are farther from the wall and they 
move at  a faster speed owing to the higher mean velocities farther from the wall. 

Although the convection speeds in the plane and axially symmetric boundary 
layer are the same there are important differences between the space-time 
correlation for the two cases. I n  the boundary layer with transverse curvature, 
the rate of decay of the maximum of the space-time correlation is more rapid 
than it is in the plane boundary layer. Referring to  figure 10, we see that when 
xJ6* = 8-33 the maximum pressure correlation is R,, = 0-1. In  the case of‘the 
plane boundary layer (Willmarth & Wooldridge 1962) R,, = 0.1 occurs for 
q / 6 *  = 22-6. The decay of the maximum (or peak) value of the pressure correla- 

t Or use numerous closely spaced transducers. 
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tions for plane and axially symmetric boundary layers are shown in figure 13, 
where Rpp(xl, 0,7J is the peak value of the pressure correlation. From the figure, 
it can be observed that in the boundary layer with transverse curvature, the 
decay of pressure correlation is more rapid than it is in a plane boundary layer. 
Additional measurements of convection speeds have been obtained from space- 
time correlation measurements with x3 + 0. These are discussed in appendix B. 

5.2. Longitudinal, lateral and oblique spatial correlations of the wall pressure 

The spatial correlations of the wall pressure (with zero time delay) have been 
studied in considerable detail to determine the contours of constant pressure 
correlation on the surface of the cylinder. The array of thirteen pressure trans- 
ducers (see figure 4), was designed so that a large number of pressure correlations 
for different spatial separations could be efficiently measured with a small 
number of pressure transducers. All of the wall-pressure correlations, at zero 
time delay, were measured in the frequency band 0,144 < (wB*/Um) < 28.8, 
and have been corrected for effect of sound in the free stream (see appendix A). 

1 .0 

0.8 

0.6 
s 
d 
H" 
- 0.4 
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R 
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- 0.3 

I\ 

?' .\ 
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I \  
!*! \ 
I 1  \ 

FIGURE 14. Longitudinal wdl-pressure correlation in a broad frequency band. x , &/a = 2, 
all others, &/a = 0. m, Re = 38,000, Willmarth & Wooldridge; 0 ,  Re = 10,000, Bull; 
A,  Re = 19,500, Bull; 0, R, = 11,000, Bull;A, Re = 24,300, Bull; 0, R, = 33,800, Bull. 

The results of the spatial correlation measurements are displayed in figures 
14 to 17. Consider figures 14 and 15 which show the longitudinal and lateral 
pressure correlation. It is clear that the pressure correlation decreases with 
x1 or x3 more rapidly than has been observed in the plane boundary layer. For 
the present case of a boundary layer with transverse curvature in which &/a z 2, 
the lateral or longitudinal spacing at  which any given positive value of the pres- 
sure correlation is attained is the order of half or less than the spacing at  which 
the same value of pressure correlation is attained in the plane boundary layer. 

Figures 16 and 17 show measurements of spatial correlation in oblique direc- 
tions, along a 45" line in figure 16 and for various oblique locations in figure 17. 

5 FLM 41  
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4 
0" 20" 40" 60" 80" 

I I I I 

I I 1 I I I I I I I 
0 1 2 3 4 5 6 I 8 9 10 

%IS" 
FIGURE 15. Transverse wall-pressure correlation in a broad frequency band. 

Same symbols as figure 14. 

In these measurements, using the array of transducers of figure 4, we have 
assumed that the random wall-pressure field is statistically homogen.eous. 
Thus, we ignore the rather slow streamwise changes in the statistical structure 
of the wall-pressure field. 

The results of all the measurements of pressure correlation with zero time 
delay are summarized and compared with the plane boundary-layer case in 
figures 18 and 19, respectively 

0.2 

0 

LIP 

FIG~RE 16. Spatial correlations of the wall pressure along a line a t  45" to the flow 
direction. L is distance along the 45' line. 
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xlp* 
FIGURE 17. Spatial correlation of the wall pressure, additional measurements. 

--A--, zJ6* = 1.10. 
-, zJ6* = 0; --0--, x J ~ *  = 0.19; --0--, xJS* = 0.48; --.--, x3/6* = 0.72; 

"1P* 
FIGURE 18. Contours of constant wall-pressure correlation. 
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Figure 18 shows that the contours of constant pressure correlation are very 
nearly circular and have decayed to  1/20 of the maximum value in a distance of 
approximately 1.58*. (Note that in this experiment 8* = 0.43 in. and 6 = 2.8 in.) 
In the lateral direction, a distance x3 = 1.58" corresponds to only 23.7 degrees 
of arc along the cylinder. 

h \ / ( I  = 0 S/c1=  2 

FIGTJRE 19. Effect of transverse curvature on contours of constant wall-pressure 
correlation. -, Bull; ----, Willmarth & Wooldridgc. 

In  figure 15, the lateral pressure correlation is negligibly small for x3/6* 3 6.2 
and does not appear to oscillate. We do not believe that there would be a signifi- 
cant correlation of the wall pressure (relative to the value of Rpp = 0.05 at  
xJS* = 1.5) for points on opposite sides of the cylinder. We have filtered out all 
pressure fluctuations with a frequency less than 100 Hz (wB*IU, < 0-144) 
and, since the convection speed is of the order of 0.8Um the half wavelength of 
the pressure fluctuations that have been rejected is already quite large, of the 
order of 2-5 cylinder diameters. Recall that the pressure correlation of figures 
14 and 15 is essentially zero in a much smaller distance, of the order of half the 
diameter of the cylinder.? 

Figure 19 compares the contours of constant correlation for plane and axially 
symmetric boundary layers. The iso-correlation contours in the axially symmetric 
boundary layer are nearly circular as compared to the case of the plane boundary 
layer in which the larger iso-correlation contours, for smaller values of R,,, 

t Difficulties caused by the vibration sensitivity of  the pressure transducers and spatial 
limitations inside the cylinder made it impossible to measure the correlation between 
pressure on opposite sides o f  the cylinder. 
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are elongated in the transverse, xg, direction. For large values of Rpp (small 
size iso-correlation contours) the shape of the iso-correlation contours is nearly 
circular for both the plane and axially symmetric boundary layer. 

From these results it is apparent that the effect of transverse curvature is to 
reduce the scale of all the random pressure-producing eddies (by a factor of two 
or more for the present experiment with Sla z 2 ) .  The reduction in transverse 
scale of the larger eddies is greater than the longitudinal scale reduction. The 
scale reduction of the smaller eddies is approximately the same in the longitudinal 
and transverse directions. 

5.3. Power spectrum of the wall pressure 

The power spectrum of the wall-pressure fluctuations beneath the axially sym- 
metric turbulent boundary layer at U, = 145 ft./sec was measured in the fre- 
quency range from 100 to 20,000 Hz (0-144 < (wS*/U,) Q 28.8) using the 
pressure transducers described in $3.2 with R/S* = 0.072. The data were com- 
pared with the power spectrum in the plane boundary layer measured with a 
pressure transducer with R/S* = 0.061 by Willmarth & Roos (1965) and with a 
pressure transducer with R/S* = 0.095 by Bull et al. (1963) (see figure 20). The 
reason for choosing 100Hz as the lower frequencylimit for the measurements was 
the possibility of free-stream temperature and vorticity disturbances caused by 
heat input or cooling at the wall of the wind tunnel circuit. A description of our 
observations of this phenomenon are given in Willmarth & Wooldridge (1962). 
However, in the present investigation, we did not observe the severe pressure 
disturbances at  low frequencies that were found at the wall (Willmarth & 
Wooldridge 1962). The reason may be that the effects of external heat input or 
cooling remain confined to a region near the wind tunnel wall. Generally speaking, 
the shape of the wall-pressure spectra beneath a two-dimensional boundary 
layer and beneath a boundary layer with transverse curvature do not appear 
greatly different on a log-log plot. However, on closer examination one finds that 
at  high frequencies, wS*lU, > 10, the wall-pressure spectrum beneath the boun- 
dary layer with transverse curvature contains approximately twice the energy 
density that wasmeasured beneath a plane boundary layer and at low frequencies, 
w6*/U, < 1, the energy density of the pressure spectrum beneath the boundary 
layer with transverse curvature is 75 % less than beneath a plane boundary layer. 
The normalized power spectra are shown on a linear scale in figure 22. It is quite 
clear on the linear scale that there is, indeed, greater spectral density at high 
frequencies. The data of figure 22 have been corrected for the effects of attenua- 
tion caused by the finite size of the pressure transducer. This is discussed below. 

5.4. Corrections for Jinite transducer size 

Experimental resolution of the structure of the turbulent pressure field is limited 
by the finite size of the pressure transducer. For a transducer of diameter 2R, 
the measurements of the spectrum of the pressure at  a frequency of the order of 
U,/2R or greater will be subject to a considerable error which becomes larger as 
the frequency increases. Therefore, it is desirable to use as small a diameter 
transducer as possible. In the present investigation, the diameter of the trans- 
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ducer was 0.06 in. and the frequency UJ2R was 30KHz. (Note that most of the 
energy in the spectra of figure 20 occurs at  frequencies less than 20KHz.) There- 
fore, the present results should not be subject t o  a large error. 

ws*/u,  
FIGURE 20. Measured wall-pressure spectra. 0 ,  &/a = 2, R/6* = 0.07, R,. = 32,100; 

, 6Ja = 0, R/S* = 0.10, R,. = 25,400, Bull; - , &/a = 0, R/6* = 0.06, 
R,. = 49,400, Willmarth & Roos. 

Corrections to the power spectrum measured by a finite size transducer be- 
neat,h a plane boundary layer have been computed by Corcos (1963). His calcula- 
tions assume that the pressure field can be represented as a function of the 
similarity variables wx,/U, and wx3/Uc. For this reason and others, related to 
the method of calculation, his corrections are an approximation to the true 
corrections. However, Corcos’s corrections agree with our plane boundary layer 
experimental results and calculations (Willmarth & Roos 1965), when 
wRIUc < 1. 

We have used Corcos’ (1963) computations for the correction of our power 
spectrum beneath the boundary layer with transverse curvature in the range of 
interest for our spectrum (for wR/Uc < 1) .  Note that using Corcos’ computations 
means that the wall pressure must be expressible using the similarity variables 
and functions used by Corcos (1963). To a reasonablet approximation this is 
true and is discussed in appendix C .  The corrected power spectrum non- 
dimensionalized by r.m.s. wall pressure is presented on a logarithmic scale in 

t The major difficulty is that the function B(wx3/Uc) is not unique (see figure 28). 
However, we expect that the corrections (which are not too large) will not be seriously in 
error. 
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W S * / U ,  

FIGURE 21. Wall-pressure spectra corrected for finite size transducer. Symbols 
same as figure 20. 

i s x  10-3 
r 

0 10 20 30 
OS*/U, 

FIGURE 22. Wall-pressure spectra of figure 21 on linear scale. -, S/u = 2;  
__-- , S/u = 0, Willmarth & Roos. 
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figure 21 and on a linear scale in figure 22. For comparison, the corrected dimen- 
sionless power spectrum of the plane boundary -layer wall pressure measured by 
other investigators are also presented in the figures. 

The corrected root-mean-square wall pressure is listed in table 3. Note that 
the correction to the root-mean-square wall pressure is small (of the order of 
10 yo). More accurate computations of the corrected root-mean-square wall 
pressure are probably not necessary. 

5.5.  Root-mean-square wall pressure 

The root-mean-square (r.m.s.) value of the pressure fluctuations on the surface 
of a cylinder was measured in the frequency band 0.063 < w&*/U, < 57.6. The 
measurements are compared with the r.m.s. wall pressure associated with plane 
boundary layer obtained by other investigators in table 3. All the data has been 
corrected for the presence of sound in the free stream and for the effect of iinite 
transducer size as noted in table 3. 

2/ ( P ” ) / q m  1/ ( P i / T w  R, Frequency range Remarks 

Axially 5.6 x 2.39 26,200 0.063 < wS*/U, < 57.6 Uncorrected Prosent data,, 
symmetric 5-99 x 2.56 26,200 0-063 < oS*jU, < 57.6 Correctod 1 R/S* = 0.072 
boundary 
laycr 

Plane 5.14 x 2.54 38,000 0-14 < wS*/U, < 28.8 Uncorrected Willmarth & 
boundary 5.64 x 2.66 38,000 0.14 < oS*/U, < 28.8 Corrected ] Roo,s (1965), 
layer R/S* = 0.061 

1 Bull et al. 
(1963) 5 . 4 ~  10-3 2.80 33,800 0.14 < wS*/U, < 17 Corrected J 

TABLE 3. Comparison of root-mean-square values of the wall-pressure fluctuations 

5 . 3 5 ~  2.48 19,500 0.016 < wS*/U, < 19.9 Corrected 
5.45 x 2.58 26,000 0.087 < wS*/U, < 11 Corrected 

According to Bull et al. (19631, theratio of r.m.s. wall pressure to free stream 
dynamic pressure is not dependent on Reynolds number. However, the ratio of 
r.m.s. wall pressure to skin friction increases slightly when Reynolds number in- 
creases because the skin friction coefficient decreases as Reynolds number in- 
creases. If we compare the ratiosj>/q, or F/rw for the plane and axially symmetric 
boundary layers (see table 3), we find that there is not a large change in either 
ratio caused by transverse curvature. For instance, the corrected ratio of r.m.s. 
wall pressure to dynamic pressure beneath an axially symmetric boundary layer 
is only 7 Yo larger than the value measured by Willmarth & Roos (1965) at slightly 
higher Reynolds number. Recalling that transverse curvature increases the 
mean skin friction, we note that 1/(172/rw) is the same (at R, = 26,000) as in a 
plane boundary layer. In  any event, there is not a large effect of transverse 
curvature on the root-mean-square wall pressure for &/a < 2 .  

5.6. Integral spatial and temporal scales 

The integral scales of the wall pressure were computed according to the formulae 
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where A,, A3 and A, are respectively the longitudinal, lateral and temporal 
integral scale. We have used the absolute value of pressure correlation in our 
definitions to ensure that spuriously small integral scales are not produced by 
oscillations of the pressure correlation caused by the rejection of low frequencies 
when the signals were filtered. 

The various integral scales are collected for comparison with the case of a 
plane boundary layer in table 4. It is apparent that in all cases the effect of 
lateral transverse curvature is to reduce the spatial and temporal integral scales. 
It is clear and not too surprising that transverse curvature reduces the lateral 
integral scale, A,, by a larger amount (a factor of 2.5 or more) than the reduction 
of the longitudinal and temporal scales (a factor of the order of 1.5). 

Axially symmetric Plane boundary layer 
A boundary layer - - 

ws* oS* os* 
urn ua2 urn Frequency range 0.144 < - < 28.8 0.14 < - < 13.6 0.075 < - < 7.5 

4 U,/S* 2.92 3.90 3.84 
W 8 *  1.31 2.06 3.20 
&is* 1.04 2.51 6.74 

Remarks Willmarth & Bull et ul. (1963) 

TABLE 4. Integral spatial and temporal scales in plane and axially symmetric 
turbulent boundary layers 

Wooldridge (1962) 

6. Summary and discussion 
From the results of our measurements presented in § 5 ,  we can make a qualita- 

tive assessment of the effect of transverse curvature on the structure of tur- 
bulence and on the wall pressure. 

First consider the result of figures 11 and 12 which show that the convection 
speed in the boundary layer with transverse curvature is almost the same as in a 
plane boundary layer. Next, consider the velocity profiles in the plane and axially 
symmetric boundary layers which are compared in figure 23 where the displace- 
ment thickness, 6*, has been used as a length scale. We have used 8* exclusively 
for our length scale in presenting our results because it is a more definite quantity 
than 6 and has been successfully used in the case of the plane boundary layer. 
(As a matter of fact, our qualitative discussion would not be changed if B or S 
were used as the characteristic length.) From figure 23, it is apparent that the 
velocity profile is much ‘fuller’ when transverse curvature is present. Consider 
a turbulent pressure producing eddy in contact with the wall of any given size 
(relative to a*). It is clear that if an eddy of this given size is present in a boundary 
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layer with transverse curvature, it will have a higher convection velocity than 
it would have in a plane boundary layer (because at  every point in the eddy the 
mean velocity would be larger). On the other hand, as mentioned above, the 
measured convection velocity in the two boundary layers is nearly the same. The 
explanation for the unchanged convection velocity is that the pressure-pro- 
ducing eddies in the boundary layer with transverse curvature must be smaller 
and therefore nearer the wall where the mean velocity is lower. 
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FIGURE 23. Comparison of the mean velocity profiles. 0 ,  &/a = 2, R, = 26,200; 
0, S/a = 0, R, = 38,000, Willmarth & Wooldridge. 

The assertion that the pressure-producing eddies are smaller (relative to 6*)  
in a boundary layer with transverse curvature is in agreement with all our other 
measurements. 

Consider the relative size of the contours of constant pressure correlation of 
figure 19. In  a boundary layer with transverse curvature, the contours are smaller 
by approximately a factor of two or more than they are in a plane boundary 
layer. Figure 13 shows the decay of the peaks of longitudinal space-time correla- 
tion. The decay is much more rapid at small spatial separation in a boundary 
layer with transverse curvature? and this is caused by the presence of smaller 
eddies that are created by the transverse curvature. (Recall that Willmarth & 
Wooldridge (1962) have shown that an eddy of any given size decays after 

f Note that in figure 13 for q /S*  > 6 the rate of decay of the maxima of the pressure 
correlation in the plane and axially symmetric boundary layer is the same. This indicates 
that after the smaller eddies have decayed, the eddy size distribution of larger eddies is 
similar in the boundary layer on a plane and cylindrical surface. 
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travelling a distance proportional to its size.) Thus, if there are relatively more 
smaller eddies, the pressure correlation will decay in a shorter distance. Finally, 
the power spectrum of the wall pressure (see figure 22) contains a greater energy 
density at  high frequencies than in a plane boundary layer owing to the un- 
changed convection speed of smaller eddies. 

Consider the contours of constant pressure correlation of figure 18 which 
are compared with those beneath a plane boundary layer in figure 19. In  general, 
the constant pressure correlation contours are nearly circular and smaller in 
size than those beneath a plane boundary layer. Note that beneath a plane 
boundary layer the larger contours of constant pressure correlation (Rpp < 0.1) 
are elongated transverse to the stream while the smaller contours (Rpp > 0.3) 
are nearly circular. 

We suggest that there are two primary effects in a boundary layer with trans- 
verse curvature that reduce the size of turbulent eddies (and the correlation 
contours). The first effect which causes a reduction in size of the eddies is the 
increased fullness of the velocity profile.? In  a boundary layer with a fuller 
velocity profile the turbulent eddies near the wall moving at any given convec- 
tion speed must be smaller because the mean velocity corresponding to that con- 
vection speed is reached at  a point nearer the wall. In  addition, there is a second 
(more direct) effect in which the large eddies suffer a greater reduction in trans- 
verse scale than small eddies because the wall is curved transversely. Thus, if one 
visualizes a large eddy adjacent to the curved wall, it is apparent that in the trans- 
verse direction at either side of the periphery of a large eddy the mean velocity is 
higher than it would be at the sides of the same eddy in a plane boundary layer. 
There is a streamwise shearing motion along the sides of large eddies in a bound- 
ary layer with transverse curvature that is not present in a plane boundary layer. 
This shearing motion also acts to reduce the transverse scale of large eddies.J 

Additional confirmation for the selective effect of transverse curvature on 
the lateral scale of large pressure producing eddies is contained in appendix C. 
There, the effect of transverse curvature on the spatial decay of the narrow band 
correlation of the pressure in a lateral direction is more rapid for large eddies 
(in a low-frequency band) than it is for small eddies (in a high-frequency band). 

We are grateful to Hugh Fitzpatrick for suggesting that these measurements 
be made. The research was supported by the Fluid Dynamics Branch of the 
Office of Naval Research. 

Appendix A. Correction of wall pressure for the effect of sound in the 
free stream 

The pressure measured at  the wall is 

t See the discussion of 5 1, about the effect of transverse curvature on the mean velocity 
profile. 

$ If we consider the extreme case of large transverse curvature with &/a + co, the trans- 
verse extent of the largest eddy is limited to a distance of the order of 26. For a plane 
boundary layer there is no readily apparent limiting transverse length. 

P* = P f PS (A11 
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where p is the turbulent wall pressure and p ,  is the pressure produced by sound 
waves in the free stream. We assume the wavelength of sound is large compared 
to the maximum, 0.33 ft., separation distance between points where p l  and p 2  
are measured. The correction is valid for sound of wavelength larger than, say, 
3 ft. or for frequencies lower than 400Hz. The sound field in the tunnel contains 
large peaks at  frequencies less than 200Hz (Willmarth & Wooldridge 1962). 
The correction is sufficiently accurate for our data. The measured pressure 
correlation is ~. 

(A21 (Pl+PS)(P2+P)s) - - 1R,,)t+P3P2 
@pp)m = ___ 

(P  + PA2 l + p T  ’ 
_ _ _  ~ 

where we assume 3 = p i ,  pl p ,  = p ,  p ,  = 0, and the true pressure correlation is 
(R,,), = plp2/p2.  Therefore 

_ _ _  

- _  
For Willmarth & Wooldridge’s (1962) data p:/p2 = 0.05 and for the present 
datapz/p2 = 0.02. 
-- 

Appendix B. Convection speeds measured in oblique directions 
Prom the results of oblique (x3 + 0 )  space-time correlation measurements, the 

locus of the peaks of pressure correlation were plotted in figure 24 as a function 
of longitudinal spatial separation for several obliquities (various values of 
x3/6*). Figure 24 shows that the location of the peaks of the pressure correlation 
in the xl, 7 plane remains the same as it was for x3 = 0. Thus, the decay of the 
wall pressure in the transverse direction does not directly effect the convection 
speed in the longitudinal direction. 

“1P* 

FIGURE 24. Time delay for R,, maximum a t  various constant values of z1 and z3. 
-, x3/S* = 0 (see figure 11); 0, z,/S* = 0.48; a, %,/a* = 0.72; Q, z&Y* = 1-10. 
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w8* 
1.28 < __ < 2.76 

urn 

08* 
3.87 < __ < 6.25 

urn 

Appendix C. Correlation of the wall pressure in narrow-frequency 
bands 

Let p(x,  z, t ;  w )  be the signal obtained by passing the output of a pressure 
transducer at  (2, z )  through an ideal filter which has a narrow pass band centred 
at a frequency, w ,  whose width is Aw. Then the correlation of pressure fluctuations 
measured by two pressure transducers a distance ( x , , x 3 )  apart at central fre- 
quency w for a band width Aw is 

Q;JxP, x3,7; w )  = (1/T) id%, 2, t ,  w )p (x  + x1,z + x3, t + 7 ;  w )  0%. (C 1) so' 
The narrow band correlation coefficient is defined as 

2.02 

( 5.06 

w8" 
Central frequency at  - 

Corcos (1962) suggested that Rkp could be represented by the expression? 

Relatively narrow-band correlations of the wall pressure were measured in the 
four frequency bands 

I 08" 
5.21 < __ < 15.63 

urn 
10.42. \ 

To carry out these measurements two Krohn-Hite model 310-AB variable band- 
pass filters were used. The high and low pass settings of the two filters were care- 
fully matched to give nearly identical phase shift as a function of frequency 
(within 3"). 

From the measured space-time correlation curves, values of correlation am- 
plitude and convection speed were obtained. Figure 25 shows the convection 
speed for increasing values of spatial separation in various frequency bands. 
The convection speed of figure 25 is obtained in the same way as that described 
in $5.1. Figure 25 shows an increase in convection speed as the longitudinal 
spatial separation increased. Part of the increase is caused by the finite band width 
of the filter since the smaller eddies in the finite band width decay faster than the 
larger ones (see Q 5.1). The asymptotic values of convection speed at  large spatial 
separation were plotted in figure 26 as a function of dimensionless frequency 
w8*/Urn. Comparing figure 26 with Willmarth & Wooldridge's (1962) data shows 
that the asymptotic convection speed (i.e. x,/b*-+co) of a given size eddy in 
the axially symmetric boundary layer is almost identical to that obtained in 
the plane boundary layer. 

7 See Bull (1961) for a complete discussion. 
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The amplitude function A (wxI /Q)  of the narrow-band longitudinal correlation 
of Corcos' representation can be found by plotting the measured maximum 
amplitude of space-time correlation, i.e. R,,(x,, 0,  T ~ ,  w ) ,  for various spatial 
separations and central frequencies (figure 27). The amplitude of narrow-band 
longitudinal space-timc correlation is only slightly less than in the plane boundary 
layer. This means that in the stream direction the rate of decay of a given size 
eddy is about the same as in the plane boundary layer and the rate of decay is 
proportional to the size of the eddy. 

FIGURE 25. Local convection speed of pressure-producing turbulent eddies in various 
frequency bands. - -- , w8*/Um = 0.79; I--- , wS*/U, = 2.02; - , wS*/U, = 5.06; 
---_ , wS*/U, = 10.42. 

0 2 4 6 8 10 12 

ws*/u, 
FIUURE 26. Asymptotic convection speed as a function of frequency. 0 ,  8/a = 2;  

0, S/a = 0,  Willmarth & Wooldridge. 

W X l l U O  

FIGURE 27. Amplitude of narrow-band longitudinal space-time correlation of the wall 
pressure, x3 = 0. -.-, 810 = 2, 08*JUm = 0.79; -=-, S/a = 2, wS*/Um = 2.02; 
-A-, 8/a = 2, w8*/um = 5.06; -0-, b'/a = 2, w8*/um = 10.42; ----, &/a = 0, 
Bull; - - -, S/a = 0, Willmarth & Wooldridge. 
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The amplitude of transverse correlation in Corcos’s representation B(wx3/Um), 
was obtained by plotting the measured transverse correlations at zero time delay 
as a function of mx3/Um,t (see figure 28). The measurements show that the ampli- 
tude of narrow-band transverse correlation for x3/6* = 0.191 is nearly the same 
as in a plane boundary layer. But for x3/6* 2 0.722, the transverse correlations 
fall off much more rapidly than they do in a plane boundary layer as mx3/Uoo 
increases. 

WXJ’J~ 
FIGURE 28. Amplitude of narrow-band transverse space-time correlation of the wall- 
pressure. For the cases z3/S* = 0.19, S/a = 2: --0--, wd’*/U, = 0.79; --o--, 
wS*/U, = 2.02; --n--, ws*/U, = 5-06; --V--, w&*/U, = 10.42. For the cases 

w&*/U, = 5.06; -v-, wS*/U, = 10.42. For S/a = 0: ---, Willmarth & Wooldridge. 
x3/6* 3 0.72, &/a = 2: -a-, d * / U ,  = 0.79; -=-, wS*/U, = 2.02; -A-, 

The approximate relation (equation (C 3)), suggested by Corcos, appears to 
be reasonably accurate if x3 = 0 (see figure 27). However, if x1 = 0 and x3 += 0, 
the function B(mx3/K) is not unique (see figure 28). This is apparently an effect 
caused by transverse curvature since a single function B(wx3/Uc) suffices for a 
plane boundary layer. Actually, the formulation of (C 3) is only an approximation 
even for the plane boundary layer and does break down in that case also; see 
Bull et al. (1963) who showed that for very low frequencies A(wxl/Uc) and 
B ( w x 3 / Q )  were not unique. 
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